10. References

[Mikado]Leveraging multiple transcriptome assembly methods for improved gene structure annotation Luca Venturini, Shabhonam Caim, Gemy George Kaithakottil, Daniel Lee Mapleson, David Swabreck. GigaScience, 2018. doi: 10.1093/gigascience/giy093
[ParsEval]ParsEval: parallel comparison and analysis of gene structure annotations Daniel S Standage and Volker P Brendel. BMC Bioinformatics, 2012, doi:10.1186/1471-2105-13-187
[RGASP]Assessment of transcript reconstruction methods for RNA-seq Tamara Steijger, Josep F Abril, Pär G Engström, Felix Kokocinski, The RGASP Consortium, Tim J Hubbard, Roderic Guigó, Jennifer Harrow & Paul Bertone. Nature Methods, 2013, doi:10.1038/nmeth.2714
[SnowyOwl]SnowyOwl: accurate prediction of fungal genes by using RNA-Seq and homology information to select among ab initio models Ian Reid, Nicholas O’Toole, Omar Zabaneh, Reza Nourzadeh, Mahmoud Dahdouli, Mostafa Abdellateef, Paul MK Gordon, Jung Soh, Gregory Butler, Christoph W Sensen and Adrian Tsang. BMC Bioinformatics, 2014, doi:10.1186/1471-2105-15-229
[CuffMerge]Identification of novel transcripts in annotated genomes using RNA-Seq Adam Roberts, Harold Pimentel, Cole Trapnell and Lior Pachter. Bioinformatics, 2011, doi:10.1093/bioinformatics/btr355
[Class2]CLASS2: accurate and efficient splice variant annotation from RNA-seq reads Li Song, Sarven Sabunciyan and Liliana Florea. Bioinformatics, 2016, doi:10.1093/nar/gkw158
[PyFaidx]Efficient “pythonic” access to FASTA files using pyfaidx Matthew D Shirley​, Zhaorong Ma, Brent S Pedersen and Sarah J Wheelan. PeerJ PrePrints 3:e1196, 2015. doi:10.7287/peerj.preprints.970v1
[Snake]Snakemake—a scalable bioinformatics workflow engine Johannes Köster and Sven Rahmann1. Bioinformatics, 2012, doi:10.1093/bioinformatics/bts480
[Trinity]De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity Brian J Haas, et al. Nature Protocols, 2013. doi:10.1038/nprot.2013.084
[Blastplus]BLAST+: architecture and applications. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BMC Bioinformatics, 2009. doi:10.1186/1471-2105-10-421
[Diamond]Fast and sensitive protein alignment using DIAMOND B Buchfink, C Xie, D H Huson. Nature Methods 12, 59-60 (2015). doi:10.1038/nmeth.3176
[STAR]STAR: ultrafast universal RNA-seq aligner Alexander Dobin, Carrie A. Davis1, Felix Schlesinger, Jorg Drenkow, Chris Zaleski, Sonali Jha1, Philippe Batut1, Mark Chaisson and Thomas R. Gingeras. Bioinformatics, 2012. doi:10.1093/bioinformatics/bts635
[Hisat]HISAT: a fast spliced aligner with low memory requirements Daehwan Kim, Ben Langmead and Stevan L Salzberg. Nature Methods, 2015. doi:10.1038/nmeth.3317
[TopHat2]TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions Daehwan Kim, Geo Pertea, Cole Trapnell, Harold Pimentel, Ryan Kelley and Steven L Salzberg. Genome Biology, 2013. doi:10.1186/gb-2013-14-4-r36
[StringTie]StringTie enables improved reconstruction of a transcriptome from RNA-seq reads Mihaela Pertea, Geo M Pertea, Corina M Antonescu, Tsung-Cheng Chang, Joshua T Mendell and Steven L Salzberg. Nature Biotechnology, 2015. doi:10.1038/nbt.3122
[GMAP]GMAP: a genomic mapping and alignment program for mRNA and EST sequences Thomas D. Wu and Colin K. Watanabe. Bioinformatics 2005. doi:10.1093/bioinformatics/bti310
[uORFs]uAUG and uORFs in human and rodent 5′untranslated mRNAs. Michele Iacono, Flavio Mignone and Graziano Pesole. Gene, 2005. doi:10.1016/j.gene.2004.11.041
[PyYaml]Pyyaml library K Simonov. http://pyyaml.org/, 2006.
[Cython]Cython: the best of both worlds. Stefan Behnel, RObert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Seljebotn and Kurt Smith. AIP - Computing in science & engineering, 2011. doi:10.1109/MCSE.2010.118
[Numpy]The NumPy array: A structure for efficient numerical computation. Stefan van der Walt, S. Chris Colbert and Gael Varoquaux. Computing in Science & Engineering, 2011. doi:10.1109/MCSE.2011.37
[Scipy]SciPy: Open Source Scientific Tools for Python. Eric Jones and Travis Oliphant and Pearu Peterson et al. http://www.scipy.org/*, 2001.
[NetworkX]Exploring network structure, dynamics, and function using NetworkX Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart. Proceedings of the 7th Python in Science Conference (SciPy2008), 2008. doi:
[BioPython]Biopython: freely available Python tools for computational molecular biology and bioinformatics. PA Cock, T Antao, JT Chang, BA Bradman, CJ Cox, A Dalke, I Friedberg, T Hamelryck, F Kauff, B Wilczynski and MJL de Hoon. Bioinformatics, 2009. doi:10.1093/bioinformatics/btp163
[DRMAA]Distributed resource management application API Version 2 (DRMAA). P Tröger, R Brobst, D Gruber, M Mamonski and D Templeton. Open Grid Forum, 2012. doi:
[Apollo]Web Apollo: a web-based genomic annotation editing platform Eduardo Lee, Gregg A Helt, Justin T Reese, Monica C Munoz-Torres, Chris P Childers, Robert M Buels, Lincoln Stein, Ian H Holmes, Christine G Elsik and Suzanna E Lewis. Genome Biology, 2013, doi:10.1186/gb-2013-14-8-r93
[Rampart]RAMPART: a workflow management system for de novo genome assembly, Daniel Mapleson, Nizar Drou and David Swarbreck. Bioinformatics, 2015. doi:10.1093/bioinformatics/btv056
[Uniprot]UniProt: a hub for protein information The UniProt Consortium. Nucleic Acid Research, 2014. doi:10.1093/nar/gku989
[Portcullis]Efficient and accurate detection of splice junctions from RNA-seq with Portcullis Daniel Lee Mapleson, Luca Venturini, Gemy George Kaithakottil, David Swarbreck. GigaScience, 2018. doi: 10.1093/gigascience/giy131
[Oases]Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels Marcel H Schulz, Daniel R Zerbino, Martin Vingron and Ewan Birney. Bioinformatics, 2012. doi: 10.1093/bioinformatics/bts094
[Bridger]Bridger: a new framework for de novo transcriptome assembly using RNA-seq data Zheng Chang, Guojun Li, Juntao Liu, Cody Ashby, Deli Liu, Carole L Cramer and Xiuzhen Huang. Genome Biology, 2015. doi:10.1186/s13059-015-0596-2
[EviGeneTobacco]Combining Transcriptome Assemblies from Multiple De Novo Assemblers in the Allo-Tetraploid Plant Nicotiana benthamiana Kenlee Nakasugi, Ross Crowhurst, Julia Bally, Peter Waterhouse. PLoS ONE, 2014. doi:10.1371/journal.pone.0091776
[TransAbyss]De novo assembly and analysis of RNA-seq data Gordon Robertson et al., Nature Methods, 2010. doi:10.1038/nmeth.1517
[Transrate]TransRate: reference-free quality assessment of de novo transcriptome assemblies Richard Smith-Unna, Chris Boursnell, Rob Patro, Julian M. Hibberd and Steven Kelly. Genome Research, 2016. doi:10.1101/gr.196469.115
[RSEMeval]Evaluation of de novo transcriptome assemblies from RNA-Seq data Bo Li, Nathanael Fillmore, Yongsheng Bai, Mike Collins, James A Thomson, Ron Stewart and Colin N Dewey. Genome Biology, 2014. doi:10.1186/s13059-014-0553-5
[Maker]MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects Carson Holt and Mark Yandell. BMC Bioinformatics, 2011. doi:10.1186/1471-2105-12-491
[EVM]Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments Brian J Haas, Steven L Salzberg, Wei Zhu, Mihaela Pertea, Jonathan E Allen, Joshua Orvis, Owen White, C Robin Buell and Jennifer R Wortman. Genome Biology, 2008. doi:10.1186/gb-2008-9-1-r7
[Augustus]WebAUGUSTUS—a web service for training AUGUSTUS and predicting genes in eukaryotes Katharina J. Hoff and Mario Stanke. Nucleic Acid Research, 2013. doi:10.1093/nar/gkt418
[Maker2]MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects Carson Holt and Mark Yandell. BMC Bioinformatics, 2011. doi:10.1186/1471-2105-12-491
[AraPort]Araport11: a complete reannotation of the Arabidopsis thaliana reference genome Chia‐Yi Cheng, Vivek Krishnakumar, Agnes P. Chan, Françoise Thibaud‐Nissen, Seth Schobel Christopher and D. Town. The Plant Journal, 2017, Volume 89, Issue 4, 789-804. doi: 10.1111/tpj.13415
[PYinterval]https://github.com/chaimleib/intervaltree
[BXPython]https://bitbucket.org/james_taylor/bx-python/overview
[Snakeviz]https://jiffyclub.github.io/snakeviz/
[PASA]Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies Haas, B.J., Delcher, A.L., Mount, S.M., Wortman, J.R., Smith Jr, R.K., Jr., Hannick, L.I., Maiti, R., Ronning, C.M., Rusch, D.B., Town, C.D. et al. Nucleic Acids Res, 2003, 31, 5654-5666. doi:10.1093/nar/gkg770
[GffRead]GFF Utilities: GffRead and GffCompare Pertea, G. and Pertea, M. F1000, 2020, 9, ISCB Comm J-304. doi:10.12688/f1000research.23297.2
[Prodigal]Prodigal: prokaryotic gene recognition and translation initiation site identification. Hyatt, D., Chen, GL., LoCascio, P.F. et al. BMC Bioinformatics 11, 119 (2010). doi:10.1186/1471-2105-11-119
[TransDecoder]https://github.com/TransDecoder/TransDecoder/wiki
[Pandas]pandas-dev/pandas: Pandas, The pandas development team. Zenodo, March 2021. doi:10.5281/zenodo.4572994
[PySAM]https://github.com/pysam-developers/pysam